pymarchenko.imaging.MarchenkoImaging#
- pymarchenko.imaging.MarchenkoImaging(vsx, vsz, r, s, dr, dt, nt, vel, toff, nsmooth, wav, wav_c, nfmax, igaths, nalpha, jt, data, kind='mck', niter=10, nproc=1, nthreads=1)[source]#
Marchenko imaging
Perform one of Marchenko’s redatuming techiniques and apply multi-dimensional deconvolution to the retrieved Green’s functions to obtain the local reflection response. This routine can be run for multiple depth levels and both images and angle-gathers can be produced as outputs
- Parameters:
- vsx
numpy.ndarray X-coordinates of virtual sources
- vsz
numpy.ndarray Z-coordinates of virtual sources
- r
numpy.ndarray Receiver array
- s
numpy.ndarray Source array
- dr
float Sampling of receiver integration axis
- dt
float Sampling of time integration axis
- nt
int Number of samples in time (not required if
Ris in time)- vel
numpy.ndarray Velocity model
- toff
float Time-offset to apply to traveltime
- nsmooth
int Number of samples of smoothing operator to apply to window
- wav
numpy.ndarray, optional Wavelet to apply to direct arrival when created using
trav- wav_c
int Index of center of wavelet
- nfmax
int Index of max frequency to include in deconvolution process
- igaths
list, optional Indices of x-axis along which to compute angle gathers
- nalpha
int Indices of x-axis along which to compute angle gathers
- jt
int Subsampling to apply to time axis of inputs wavefields for MDD
- data
numpy.ndarray Reflection data
- kind
str, optional Marchenko algorithm to apply (
mck,nmck, orrmck)- niter
int, optional Number of iterations of Marchenko scheme
- nproc
int, optional Number of processes
- nthread
int, optional Number of threads per process
- vsx
- Returns:
- iss
numpy.ndarray Single-scattering image
- imck
numpy.ndarray Marchenko image
- ass
numpy.ndarray, optional Single-scattering angle gathers
- amck
numpy.ndarray, optional Marchenko angle gathers
- iss